Case # 10: A Mechanical Issue

A 32 year old male was carrying a heavy pipe overhead with his right arm and slipped falling forward, onto the right side. He notes pain in the right shoulder, worse with any movement. His right arm is flexed and internally rotated for comfort.

Vitals: T 98.6 HR 95 BP 143/91  RR 14 O2 98% on RA

A bedside ultrasound of the right shoulder is performed, what is the next best step in management?

Screen Shot 2017-11-18 at 11.09.45 AM

Answer and Learning Points


Shoulder dislocation reduction. The ultrasound image shows anterior displacement of the humeral head with respect to the glenoid fossa consistent with an anterior shoulder dislocation. A hematoma is also noted within the joint space which is very commonly associated with a traumatic shoulder dislocation. 

Ultrasound diagnosis of anterior shoulder dislocation

Learning Points

    • Ultrasound is useful for both the initial diagnosis and reduction confirmation of a shoulder dislocation, as well as for intra-articular injection of local anesthetic; however in a traumatic dislocation, an initial x-ray should be obtained to evaluate for any associated fracture.
    • To perform the exam, a low frequency curvilinear transducer should be used. The operator should stand behind the patient, on the side of the affected shoulder, and place the ultrasound system directly in front of the patient for easy visualization. The probe should be placed on the posterior aspect of the scapula, parallel and just inferior to the scapular spine. This will allow direct visualization of the glenohumeral joint.
  • Proper probe placement for evaluation of glenohumeral joint.
    • In a normal shoulder the glenoid and humeral head articulate nicely and this can be appreciated on ultrasound with internal and external rotation of the patient's arm, however with dislocation, the humeral head and glenoid will not be aligned. In anterior dislocation, the humeral head will be deep to the glenoid, while in a posterior dislocation, the humeral head will be more superficial to the glenoid.
  • Normal glenohumeral ultrasound anatomy
    • Ultrasound is especially useful to confirm successful shoulder relocation and prevent both a prolonged stay in the emergency department waiting for a post reduction x-ray, as well as re-sedation if this was required for a difficult shoulder reduction.
    • Lastly, this same ultrasound view can be used for in-plane needle guidance to provide intra-articular anesthesia using a lateral needle entry approach.
    • For a 5 minute video tutorial on  ultrasound for shoulder dislocation , click here to watch this excellent video at 5 Minute Sono.
In vivo shoulder reduction!

The effect of vessel depth, diameter, and location on US guided peripheral intravenous catheter longevity


Nearly 30% of all patients who visit the ED in the US each year will require venous access. Bedside ultrasound-guided peripheral IVs (USGPIV) offer an alternative to central venous cannulation and external jugular cannulation for patients in which PIV access cannot be obtained, thereby reducing the risks of infection and the need for additional resources that are associated with the aforementioned procedures. The downside to USGPIVs lies in the longevity of this method of venous access, which introduces complications such as extravasation, tissue necrosis and disruption of access.  Failure rates are high, with 8% of them failing within the first 8 hours, and 47% failing within the first 24 hours. The authors of this weeks article speculate that this is due to the nature of the vessels targeted by ultrasound (US), being that they are often deeper and smaller veins in locations that are otherwise difficult to access without specialized imaging. This article will explore the influence of various vessel characteristics on the success and longevity of the USGPIVs, including vessel depth, diameter, and location.

The effect of vessel depth, diameter, and location on US guided peripheral intravenous catheter longevity

Clinical Question

How do specific characteristics of a vessel determine the success and longevity of a USGPIV?

Methods & Study Design

  • Design
    • A retrospective chart review of a previously gathered database of difficult intravenous access (DIVA) patients who underwent USGPIV placement in the ED
    • Data included images and measurements of the vessel’s depth, diameter and location as well as survival time of the IV
  • Population
    • Urban tertiary care center with a 4-yr EM residency and an US fellowship
    • Study period: Dec 2007-May 2008
  • Inclusion criteria
    • All DIVA patients: A DIVA patient is defined as someone with 2 failed peripheral IV attempts or a history of DIVA with inability to visualize or palpate a target vein on physical exam
    • DIVA patient must have underwent successful USGPIV placement in ED
  • Exclusion criteria
    • There were no specific exclusion criteria however patients were excluded for several reasons:
      • 18 for inability to establish USGPIV using study protocol
      • 12 for lack of charting to accurately determine time of IV removal
      • 2 for failure of consensus of at least 2 of the 3 blinded independent chart reviewers on timing or outcome of IV
  • Intervention
    • USGPIVs were placed by 2 PGY-2s, 1 PGY-3, and 1 US fellow, all met ACEP guidelines (at least 10 USGPIVs previously performed)
      • Successful IV placement was defined as aspiration of 5 mL of blood and ability to flush the line without resistance
      • Only 20-gauge, 48-mm-long (Angiocath Autoguard;BD Medical Systems, Sandy, UT) catheters were used for USGPIV placement
      • During USGPIV placement, vessels were measured for depth and diameter, and location was noted on a diagram of the upper extremity
  • Outcomes
      • Failure rate of USGPIV based on depth, diameter, and location
        • 2 blinded independent chart reviewers followed successfully placed USGPIVs for 48 hours or until failure, whichever came first
        • Failures were defined as IVs that infiltrated, dislodged, stopped working or were discontinued prematurely
        • IVs removed on patients that no longer required access were not considered failures


  • Calculated USGPIV survival curves for vessels at given depths and location from Fields et al.
    • Statistical Analysis
      • Vessel depth divided into 3 zones: shallow (0.4 cm), intermediate (0.4-1.19 cm), and deep (≥1.2 cm); Intravenous diameter was divided into 4 groups (<0.3, 0.3-0.39, 0.4-0.49, and ≥0.5 cm);
      • Vessel location was divided into proximal (brachial region) and distal (antecubital fossa, forearm, or hand veins).
      • Kaplan-Meier estimator was used to measure time-to-failure and remove potential confounder of IVs that were removed for discharge or no longer needed
    • Findings
      • At 48 hrs, 48 (32%) had failed because of dislodgment, infiltration, or patient discomfort
        • 20 (42%) infiltrated
        • 11 (23%) dislodged
        • 16 (33%) were not flushing
        • 1 removed for discomfort
        • 36 (24%) were removed for routine reasons
        • 67 (44%) were still in place and without incident
        • There was no difference in patient characteristics of IVs that failed vs. those that did not fail
      • Kaplan-Meier Survival Analysis 
        • Depth: Survival probability excellent (1.00) for shallow vessels, moderate (0.62) for intermediate vessels, poor (0.29) for deep vessels STRONGEST PREDICTOR
        • Location: antecubital fossa or forearm associated with improved survival when compared with proximal placement in brachial or basilic vein (0.93 vs. 0.71)
        • Diameter: no significant difference
        • For each increase of 0.2 cm in depth, odds of failure at 48 hrs increases by hazard ratio of 1.36
        • Placement in proximal vs. distal location increases odds of failure by hazard ratio 2.76

Strengths & Limitations

  • Strengths
    • No difference in patient characteristics between failed and successful USGPIVs
    • Recruited difficult IV access patients from urban academic tertiary ED which is likely representative of true difficult access patient population and can be generalized to other EDs
    • 2 independent reviewers used for retrospective chart review
  • Limitations
    • Outcome variable (survivability) was gathered retrospectively; potential bias in rapid realization of IV failure and clear documentation
    • Possible that failed catheters were documented as “removed” because they were no longer needed or another access was obtained
    • Did not account for certain factors: nature of the infusion, how often IV accessed, movement of extremity, use of fixation device
    • Only assessed using 20-gauge, 48-mm IV
    • Small group of sonographers performed data collection, they may be more skilled than general population of emergency physicians

Author's Conclusions

“Ultrasound provides a useful rescue method for establishing IV access in patients with DIVA. The current study reveals 2 factors that significantly affect the durability of these IVs— depth and location. Using a 48-mm catheter, vessels of 1.2 cm or more deep have a high likelihood of USGPIV failure and should only be cannulated when other options are not available. Vessels of less than 0.4 cm deep yield the best USGPIV longevity. Forearm and antecubital sites are more enduring than those in the upper arm. Understanding of these associations will help the sonologist select the optimal vessel for successful USGPIV cannulation and longevity.”

Our Conclusions

Depth should be the primary consideration when selecting a vessel for USGPIV access. Due to high immediate failure rates, vessels of 1.2 cm deep or more deep should be avoided and other means of obtaining venous access should be considered. Providers should also take into consideration the location of IV placement. If it is anticipated that a patient will require IV access for longer than the immediate stay in the emergency department, then proximally-located IVs should be avoided given their high failure rate at 18 hours. This failure may be explained by the fact that proximal vessels are located closer to the axilla and usually embedded in looser skin containing more subcutaneous fat with greater potential for dislodgment upon movement of the extremity. Therefore, providers should consider how long the patient will be requiring access as well as how often the patient will be required to move the extremity in making decisions regarding venous access.

The Bottom Line

USGPIVs that are placed in more superficial (<1.2 cm) and distal (forearm/antecubital space) veins have a significantly higher likelihood of survival at 48 hours and these factors should strongly be considered when evaluating for a target for IV placement.


This post was written by Courtney Shay, MS4 at George Washington University. It was reviewed by Michael Macias, MD, Ultrasound Fellow at UCSD.


    1. Fields JM, e. (2017). The effect of vessel depth, diameter, and location on ultrasound-guided peripheral intravenous catheter longevity. - PubMed - NCBI Retrieved 10 November 2017, from

Case # 9: A Transplant Dilemma

A 52 year old male with a h/o kidney transplant presents to the emergency department with pain over his transplanted kidney site (right pelvic region). He also notes increased weakness, nausea and a significant decrease in urine output. He denies any fever. He states he is compliant with his anti-rejection medications.

Vitals: T 99.0 HR 105 BP 165/91  RR 18 O2 98% on RA

A bedside ultrasound is performed, what is the next best step in management?

tx_severe hydro

Answer and Learning Points


Insertion of foley catheter. The clip above demonstrates severe hydronephrosis of the patient's transplanted kidney. A foley was inserted in the emergency department with immediate output of 1.5 L of clear urine. The patient was found to be in renal failure secondary to his urinary outlet obstruction. He was admitted to transplant surgery and his renal function improved over the next day; he was discharged home with a leg bag and urology follow up. Below is a repeat ultrasound of his transplanted kidney after drainage of his bladder: 

Learning Points

    • Urinary obstruction in a transplanted kidney can be missed initially as pain over the patient's graft site and decreased urine output is easily contributed to possible rejection or infection.
    • The differential diagnosis of acute renal failure in the transplanted kidney is broad (see table below) and emergency department management should include a thorough evaluation for prerenal, intrinsic and post renal causes, in consultation with a transplant service.
    • All renal transplant patients presenting with acute renal failure should have a formal renal ultrasound with doppler to evaluate the graft however often this is not available immediately and a bedside ultrasound can assist with rapid identification of acute urinary obstruction.


This post was written by Michael Macias, MD, Ultrasound Fellow at UCSD.


    1. Kadambi PV., Brennan DC., Chon J. (2017). Evaluation and diagnosis of the patient with renal allograft dysfunction. In T.W. Post, B. Murphy, & A. Lam (Eds.), UptoDate. Available from
Translate »