Test Characteristics of Point of Care Ultrasound for the Diagnosis of Retinal Detachment in the Emergency Department

Background

Retinal detachment (RD) is the final diagnosis for 3-4% of patients presenting to the Emergency Department (ED) with ocular complaints. Presenting symptoms most commonly include acute onset flashes and floaters, however, this presentation is not unique. The timely diagnosis and differentiation of RD from more common, benign, and similarly presenting processes, such as posterior vitreous detachment, is important in order to treat RD and prevent the sequela of permanent vision loss.

Point of care ultrasound (POCUS) has been successfully employed in the diagnosis of retinal pathology with high degrees of success according to observed test characteristics (sensitivity 97%-100%; specificity 83-100%) in emergency medicine (EM) literature. The generalizability of this data is limited, however, due to study features, including the use of highly experienced sonographers, inconsistent scanning protocols, and poor reference standards. This investigation seeks to derive the test characteristics for POCUS in the diagnosis of RD when used by a heterogeneous population of emergency physicians (EPs).

Test Characteristics of Point of Care Ultrasound for the Diagnosis of RetinalDetachment in the Emergency Department

Clinical Question

What are the test characteristics (sensitivity and specificity) of POCUS for the diagnosis of RD in patients presenting with chief complaint of flashes or floaters, when performed by a group of emergency physicians with varying degrees of ultrasound experience?

Methods & Study Design

  • Design
    • Prospective study using a convenience sample of patients presenting to the ED with a chief complaint of flashes or floaters in visual fields
  • Population
    • Conducted at Vancouver General Hospital, an urban academic tertiary care center
  • Inclusion Criteria
    • Patients presenting with chief complaint of acute (7 days or less) onset flashes or floaters in one or both eyes between March 2015 and September 2016
  • Exclusion Criteria
    • Age younger than 19 years, known diagnosis of RD, exam compromised due to advanced cataract in the affected eye, ophthalmologic surgery on affected eye within prior two weeks
  • Intervention
    • EP performed ocular POCUS with high-frequency linear transducer
    • Scan performed in both transverse and longitudinal plane with dynamic assessment of posterior chamber (patient looking left/right and up/down)
    • Positive or negative interpretation for RD was recorded
    • Reference Standard
      • Patients were referred to an ophthalmology resident who performed non-blinded assessment including a complete dilated retinal exam
      • Patients were then seen by a retina specialist blinded to the ED POCUS within 1 week, or for patients with a retinal tear or RD diagnosis, within 1 day
    • Standardized training session for emergency providers
      • EM attendings (20), fellows (2), and residents (8) of varying ultrasound experience received a 1 hour lecture on the use of POCUS to detect RD
      • All participating EPs performed one practice scan on a healthy volunteers
  • Outcomes
    • Primary outcome: Accuracy of the EP diagnosis with respect to the reference standard, the retina specialist diagnosis
    • Test characteristics: sensitivity, specificity, diagnostic accuracy, LR+, and LR- 

Results

Flow of Patients Through Study

Primary analysis

    • Sensitivity: 75% (95% CI 48-93%)
    • Specificity: 94% (95% CI 87-98%)
    • Diagnostic accuracy: 91% (95% CI 85-96%)
    • LR-positive: 12.4 (95% CI 5.4-28.3)
    • LR-negative: 0.27 (95% CI 0.11-0.62)

Secondary analyses

    • Test characteristics by level of training
      • Residents and fellows: 100% sensitivity, 95% specificity
      • Attending physicians: 71% sensitivity, 94% specificity
    • Test characteristics by number of patients enrolled by EP
      • 1-2 patients enrolled: 80% sensitivity, 71% specificity
      • 3 or more patients enrolled: 73% sensitivity, 98% specificity

Limitations

    • Insufficiently powered for the secondary analyses
    • Single program study limits generalizability
    • Prior ultrasound experience was not explicitly assessed
    • RD is not always classically presenting, starting with a population defined by classic symptoms may influence observed test characteristics

Authors Conclusion

“In a heterogeneous group of EPs with varying ultrasound experience, POCUS demonstrates high specificity but only intermediate sensitivity for the detection of RD. A negative POCUS scan in the ED performed by a heterogeneous group of providers after a one-hour POCUS didactic is not sufficiently sensitive to rule out RD in a patient with new onset flashes or floaters.”

Our Conclusion

This study demonstrates that emergency physicians of varying training levels and ultrasound experience can successfully employ POCUS in the diagnosis of RD after only a short training session. By incorporating POCUS into the workup of patients presenting with ocular complaints characteristic of RD, true pathology can be identified with high specificity. Appropriate care can then be mobilized expeditiously in these scan-positive patients in order to prevent the permanent vision loss associated with this condition.

Indeed, a 74% sensitivity is too low for POCUS to reliably be utilized by a heterogeneous population of EPs as a tool to rule-out RD, especially given the consequences of a missed diagnosis. It would be reasonable practice, therefore, as the authors suggest, for all patients with new onset flashes and/or floaters to continue be referred for further ophthalmologic evaluation to definitively rule-out RD and other conditions at-risk for progression to RD. It should also be noted, however, that a trend towards increased specificity was observed amongst physicians who enrolled more patients in this study. Taken in context with test characteristics reported in prior literature, these findings may suggest that specificity can be improved upon with experience, and in the hands of a trained sonographer, POCUS may also be used as a tool to reliably rule-out RD.

The Bottom Line

Emergency providers can reliably use point-of-care ultrasound to diagnose retinal detachment with high specificity after a short, one-time training course, but must recognize the limitations of POCUS as a tool to rule-out RD in this setting, given a relatively low sensitivity when used for this purpose.

Authors

This post was written by Oretunlewa Soyinka, MS4 at UCSD. Review and further commentary was provided by Cameron Smyres, MD, Ultrasound Fellow at UCSD.

References

1 .  Hikichi T, Hirokawa H, Kado M, et al. Comparison of the prevalence of posterior vitreous
detachment in whites and Japanese. Ophthalmic Surg 1995; 26:39-43.

2.  Hollands H, Johnson D, Brox AC, et al. Acute-onset floaters and flashes: is this patient at
risk for retinal detachment? JAMA 2009; 302:2243-9

3.  Alotaibi AG, Osman EA, Allam KH, et al. One month outcome of ocular related
emergencies in a tertiary hospital in Central Saudi Arabia. Saudi Med J 2011; 32:1256-60.

4.  Mitry D, Charteris DG, Fleck BW, et al. The epidemiology of rhegmatogenous retinal
detachment: geographical variation and clinical associations. Br J Ophthalmol 2010;
94:678-84.

The Predictive Value of Bedside Ultrasound to Restore Spontaneous Circulation in Patients with PEA: A Systematic Review and Meta-Analysis

Background

Cardiac arrest remains one of the leading causes of death in the United States and is frequently encountered in the emergency department (ED). It is defined as cessation of cardiac function and lack of circulation. Cardiopulmonary resuscitation (CPR) improves outcomes especially if it is performed within minutes of cardiac arrest. According to recent American Heart Association (AHA) statistics, approximately,  10.6% of patients who experience cardiac arrest survive to hospital discharge [1]. On the other hand, pulseless electrical activity (PEA) is a form of cardiac arrest in which patients continue to have organized cardiac electrical activity without a palpable pulse. This patient population's overall survival is much lower with 2.4% of patients surviving to hospital discharge [2]. Until recently, there has been an incomplete understanding of the the term PEA and what this means physiologically. With the advent of ultrasound (US), there has now been elucidation of two forms of PEA. True-PEA (tPEA) which lacks cardiac activity on US, has poor survival rates, while pseudo-PEA (pPEA) which demonstrates some cardiac activity on US,  shows improved survival,  potentially due to altering standard ACLS protocol driven management. The following study specifically looks at the data evaluating the predictive value of US in patients presenting in cardiac arrest with PEA.

The predictive value of bedside ultrasound to restore spontaneous circulation in patients with pulseless electrical activity: A systematic review and meta-analysis.

Clinical Question

Does bedside US predict the restoration of spontaneous circulation in patients with pulseless electrical activity?

Methods & Study Design

  • Design
    • Systematic review and meta-analysis
    • Data from MEDLINE, EMBASE, Cochrane library databases (inception to June 2017)
    • Statistical analysis
      • Review Manager 5.4 and Stata 12
      • I2 statistics to assess heterogeneity
      • Random effects model for all polled outcome measures
      • Begg’s test for publication bias
  • Study Eligibility Criteria
    • Adults with PEA
    • Cardiac US was used to detect cardiac activity
    • ROSC defined as primary outcome
    • Prospective/ observational studies
    • Written in English
    • 2x2 contingency table can be formed from data

Results

Included Studies

    • 11 studies with 777 patients with PEA included
    • 230 patients had ROSC
    • 42/343 "true-PEA" patients had ROSC
    • 188/434 "pseudo-PEA" patients had ROSC
    • Patients with pPEA were 4.35x more likely to experience ROSC than those tPEA (Risk ratio 4.35, confidence interval 2.20-8.63, p<0.00001, significant statistical heterogeneity I2= 60%)

Limitations

    • Significant heterogeneity amongst the 11 studies
      • 4 studies enrolled both trauma and non-trauma patients
      • In 3 studies, US evaluation occurred in the pre-hospital setting
    • Large confidence interval
    • Small pooled sample size
    • Varying protocols and US views used in different studies to determine cardiac activity
    • Varying definition of ROSC between studies

Authors Conclusion

 

"In cardiac arrest patients who present with PEA, bedside US has an important value in predicting ROSC. The presence of cardiac activity in PEA patients may encourage more aggressive resuscitation. Alternatively, the absence of cardiac activity under US could be promoted as a way of confirming a poor prognosis and used to support the decision to terminate resuscitative efforts."

Our Conclusion

This study found that patients in cardiac arrest with pPEA (i.e. cardiac motion on ultrasound) have higher ROSC than those with tPEA (i.e. no cardiac motion on ultrasound). The exact risk ratio for ROSC quoted in their results should be interpreted with caution since this meta-analysis included studies with vastly different characteristics. The 11 studies included took place in 9 different countries over the span of 15 years, included different US views (subxiphoid, parasternal), varied settings (pre-hospital and in-hospital US studies), varied patient populations (some studies included traumatic cardiac arrest) and had varying US operator experience. Additionally, other factors such as time to initiation of CPR, length of CPR, and the previous health of the patient were not accounted for. These limitations can affect the accuracy of the risk ratio presented in this study.  That being said, even with significant heterogeneity in this study, resulting in a very wide confidence interval, the lower limit of the risk ratio (2.20) still finds statistical significance for higher rate of ROSC in patients with pPEA compared to patients with tPEA.

This study essentially confirms what is already known from previous data (specifically the Gaspari study which represents the majority of patients in this meta-analysis) but fails to address the big question of "Does US guided resuscitation provide a mortality benefit in the management of cardiac arrest?" This is a complex question that takes into account multiple other questions including the debate over US increasing interruptions in chest compressions, the use of US to identify immediately reversible causes of cardiac arrest (i.e. tamponade, massive PE) , the true definition of cardiac standstill (which calls the results of all cardiac arrest studies thus far into questions), and ultimately, can US be used to determine if further resuscitation is futile? As with all advances in technology, finding the right niche to benefit the patient is of upmost importance and at this point in time, the utility of US in cardiac arrest remains to be determined.

The Bottom Line

Bedside ultrasound can be used to determine pPEA from tPEA in patients with cardiac arrest. This may help guide resuscitation efforts as patients with pPEA have increased rates of ROSC.

Authors

This post was written by Tina Vajdi, MS4 at UCSD. Review and further commentary was provided by Michael Macias, MD, Ultrasound Fellow at UCSD.

References

    1. Mozaffarian D, Benjamin EJ, Go AS, Arnett DK, Blaha MJ, Cushman M et al. Heart Disease and Stroke Statistics-2016 Update: A Report From the American Heart Association. Circulation 2016; 133(4):e38– e360. https://doi.org/10.1161/CIR.0000000000000350 PMID: 26673558
    2. Engdahl J, Bang A, Lindqvist J, Herlitz J. Factors affecting short- and long-term prognosis among 1069 patients with out-of-hospital cardiac arrest and pulseless electrical activity. Resuscitation 2001; 51 (1):17–25. PMID: 11719169
    3. Gaspari R, e. (2018). Emergency department point-of-care ultrasound in out-of-hospital and in-ED cardiac arrest. - PubMed - NCBI . Ncbi.nlm.nih.gov. Retrieved 20 April 2018, from https://www.ncbi.nlm.nih.gov/pubmed/27693280

Can The Degree of Hydronephrosis on Ultrasound Predict Kidney Stone Size?

Background

Symptomatic renal colic is a common complaint presenting to the emergency department (ED), with a rate of 126 to 226 per 100,000 ED visits [1]. In the ED, CT is frequently used to make the definitive diagnosis as it allows for determination of stone size and location, degree of hydronephrosis, and evaluation of other pathology that may mimic renal colic. However this is a particularly worrisome approach in patients with recurrent ureteral stones who have been exposed to numerous previous CT imaging studies. Previous data has shown that emergency physician performed ultrasound is accurate at identifying hydronephrosis, which in combination with hematuria, is sufficient for the diagnosis of renal colic [2,3]. Furthermore,  an ultrasound first approach has been shown to be safe and reasonable as an initial evaluation for suspected renal colic [4]. What ultrasound does not tell us about renal colic is the size of the ureteral stone, which can be useful in determining the need for immediate intervention versus medical management. The following study seeks to determine if the degree of hydronephrosis seen on ultrasound performed by emergency physicians, can be predictive of ureteral stone size. 

Can the degree of hydronephrosis on ultrasound predict kidney stone size?

Clinical Question

Can the degree of hydronephrosis on ultrasound predict kidney stone size?

Methods & Study Design

  • Design
    • Retrospective chart review of emergency department (ED) patients at a single academic medical center
  • Population + Inclusion Criteria 
    • Adult patient presenting to the emergency department who had confirmed ureterolithiasis on noncontrast CT and a focused emergency renal ultrasound performed
  • Exclusion criteria
    • No specific criteria
  • Intervention
    • A focused renal ultrasound was performed in the ED by an emergency medicine resident or attending to evaluate for the presence of hydronephrosis as an indicator of obstructive ureterolithiasis
    • All ultrasound examinations were subsequently reviewed for quality assurance by an emergency ultrasound fellowship trained emergency physician
  • Outcomes
    • Each focused renal ultrasound classified the degree of hydronephrosis as none, mild, moderate, or severe and this was compared to the ureteral stone size on noncontrast CT
      • Definitions:
        • Mild hydronephrosis was defined as enlargement of the calices withpreservation of the renal papillae
        • Moderate hydronephrosis was defined as rounding of the calices with obliteration of therenal papillae
        • Severe hydronephrosis was defined as caliceal ballooning with cortical thinning
    • Ureteral stone size was stratified into 2 groups, those 5mm or smaller and those larger than 5 mm, based on the likelihood of successfully spontaneous stone passage

Results

Increasing degree of hydronephrosis seen on focused ultrasound was associated with an increasing proportion of ureteral calculi larger than 5 mm. 113 (87.6%) patients with less severe hydronephrosis  (none or mild) had ureteral calculi 5 mm or smaller. Of the remaining 16 (12.4%) patients with less severe hydronephrosis, none of these patients had ureteral stones larger than 10 mm. There was good interobserver agreement between the degree of hydronephrosis as determined by the performing emergency physician and the quality assurance review (k = 0.847).

Strengths & Limitations

  • Strengths
    • Majority of ultrasound examinations performed by ED physicians making this applicable to point-of-care ultrasound
    • Gold standard was size of ureteral stone on noncontrast CT
    • Good interobserver agreement between ED ultrasound operator and quality assurance review
  • Limitations
    • Retrospective chart review
    • This study only enrolled patients who both a focused renal ultrasound and confirmed ureterolithiasis on noncontrast CT; this would have missed patients who only had either a focused renal ultrasound or noncontrast CT alone (selection bias)
    • No patient centered outcomes data

Authors Conclusion

"In conclusion, our results demonstrate a relationship between the degree of hydronephrosis as determined by emergency physicians on focused emergency ultrasound and ureteral calculi size; patients with less severe hydronephrosis were less likely to have larger ureteral calculi. This suggests that ultrasound can help identify many, but not all, patients who are at lower risk for having larger ureteral calculi.

Our Conclusion

This paper identifies a correlation between the degree of hydronephrosis on ultrasound and ureteral stone size seen on noncontrast CT. Essentially, patients with minimal or no hydronephrosis are very unlikely to have have a large (>5 mm) ureteral stone. Unfortunately, focused ultrasound is not perfect, and in this study  ~12.4% of patients with minimal or no hydronephrosis still had a large ureteral stone. What I found reassuring was that in this group, none of the patients had a ureteral stone > 10 mm, which at most institutions is the cut off for allowing a trial of passage. Even dissecting the data further, of the patients with moderate hydronephrosis, only 2 out of 43 (4.6%) patients had a stone > 10 mm.

This study suggests that focused renal ultrasound can be used to screen patients with suspected renal colic and potentially avoid an unnecessary CT scan. As with any focused ultrasound, the decision to obtain a CT should not be based solely the degree of hydronephrosis but also in conjunction with the clinical history, physical exam and other pertinent factors (previous ureteral stone, previous need for stone intervention, other concerning diagnoses on differential, pain control, institutional culture, urinalysis, etc). 

The Bottom Line

Ultrasound can be used to identify many, but not all, patients who are at lower risk for having larger ureteral calculi. 

Authors

This post was written by Michael Macias, MD, Ultrasound Fellow at UCSD.

References

    1. Teichman JMH. Clinical practice. Acute renal colic from ureteral calculus. N Engl J Med 2004;350:684-93.

    2. Rosen CL, Brown DFM, Sagarin MJ, et al. Ultrasonography by emergency physicians in patients with suspected ureteral colic. J Emerg Med 1998;16:865-70.

    3. Gaspari RJ, Horst K. Emergency ultrasound and urinalysis in the evaluation of flank pain. Acad Emerg Med 2005;12:1180-4.

    4. Smith-Bindman R, e. (2018). Ultrasonography versus computed tomography for suspected nephrolithiasis. - PubMed - NCBI . Ncbi.nlm.nih.gov. Retrieved 3 March 2018, from https://www.ncbi.nlm.nih.gov/pubmed/25229916
    5. S, G. (2018). Can the degree of hydronephrosis on ultrasound predict kidney stone size? - PubMed - NCBI . Ncbi.nlm.nih.gov. Retrieved 3 March 2018, from https://www.ncbi.nlm.nih.gov/pubmed/20837260

Free Fluid in Morison’s Pouch on Bedside Ultrasound Predicts Need for Operative Intervention in Suspected Ectopic Pregnancy

Background

Vaginal bleeding and abdominal pain are common presenting symptoms to the emergency department (ED) in women in early pregnancy. While the majority of pregnant patients presenting with these symptoms are stable, a small subset of this group represents a ruptured ectopic pregnancy with a potential to rapidly decompensate, resulting in high rates of morbidity and mortality. Therefore it is critical for this diagnosis to be identified both accurately and rapidly.

The Focused Assessment of Sonography in Trauma (FAST) exam has been well studied in the acute trauma setting to identify internal bleeding however there is not much data on its use in the non trauma setting. In theory, it makes intuitive sense that it should perform similarly and be able to accurately identify significant non traumatic pelvic and intraperitoneal bleeding.

In a previous study, emergency physician (EP) performed bedside ultrasound (US) in suspected ectopic pregnancy was found to  decrease the time to both diagnosis and treatment [1]. The following study seeks to prospectively investigate the significance of positive fluid in Morison's pouch during transabdominal US examination performed by EPs in patients with suspected ectopic pregnancy. 

Free Fluid in Morison’s Pouch on Bedside Ultrasound Predicts Need for Operative Intervention in Suspected Ectopic Pregnancy‌

Clinical Question

Is EP performed US with identification of free fluid in Morison's pouch predictive of the need for operative intervention in suspected ectopic pregnancy?

Methods & Study Design

  • Design
    • Prospective observational study
  • Population
    • Conducted at Yale-New Haven Hospital, an urban Level 1 trauma center and teaching hospital
    • Pregnant women presenting to the ED in whom there was a suspicion of an ectopic pregnancy
  • Inclusion criteria
    • Female patients with positive pregnancy test who presented in first trimester with abdominal pain and/or vaginal bleeding and requiring further imaging or consultation
  • Exclusion criteria
    • No specific criteria
  • Intervention
    • EP performed transabdominal and transpelvic US evaluation for:
      • Free fluid in Morison's pouch (positive, negative or indeterminate)
      • Presence of intrauterine pregnancy (IUP), or no definitive IUP
      • Free fluid in the cul-de-sac (present, absent)
  • Outcomes
    • Follow up and chart review was performed by independent study investigators, blinded to ED US results, ultimately classifying the final outcome as ectopic or non ectopic pregnancy and further defining the management as operative or medical.

Results

Patient Flow Diagram 

Ultrasound Findings and Clinical Characteristics  of Patients

 

 

Strengths & Limitations

  • Strengths
    • Performed in ED based population
    • All ultrasound examinations performed by ED physicians making this applicable to point-of-care ultrasound
  • Limitations
    • Potential selection bias given that rate of ectopic pregnancy in study population was higher than most published rates
    • Not truly observational study as treating physicians were not blinded to ED US results
    • Some patients lost to follow up

Authors Conclusion

"Free intraperitoneal fluid found in Morison’s pouch in patients with suspected ectopic pregnancy may be rapidly identified at the bedside by an EP-performed US and predicts the need for operative intervention. Transabdominal pelvic US may show an IUP in more than one third of patients with suspected ectopic pregnancy."

Our Conclusion

While this paper does not have the methodological prowess of a multicenter randomized control trial, it accurately answers an important question with respect to positive fluid in Morison's pouch on ED US and the need for operative intervention in ectopic pregnancy. This study also highlights the niche of point-of-care ultrasound and why it is so critical to our practice as emergency medicine providers. Unlike radiological studies, which require increased time and may be difficult to obtain in critical patients, point-of-care ultrasound allows rapid identification of key findings that allow for early diagnosis and decision making.

Based on this study, the addition of positive fluid seen in Morison's pouch during ED US for suspected ectopic pregnancy now adds on a strong predictor for the need for operative intervention. This is especially important in unstable and hypotensive patients.

However, there are several caveats to understand when interpreting this data. First, all the patients in this study were enrolled after having a positive pregnancy test, therefore, prior to assuming that a young female with free fluid in her abdomen is from a ruptured ectopic pregnancy, a pregnancy must first be confirmed.  Second, not all free fluid in Morison's pouch in a pregnant woman is due to an ectopic pregnancy. In this data set, there was one patient that had a definitive IUP and free fluid in Morison's pouch which was found to be from a ruptured corpus luteal cyst. There are also case reports of splenic artery aneurysm rupture in pregnancy that could mimic a ruptured ectopic [2]. If an IUP is identified on transabdominal ultrasound, unless the patient is receiving advanced reproductive techniques, alternative explanations for the free fluid should at least be considered before a heterotopic pregnancy is presumed. Third, while this study demonstrates excellent specificity of positive fluid in Morison's pouch and the need for operative intervention in suspected ectopic pregnancy, it has very poor sensitivity. Therefore, ED US should be used as a rule in technique and does not replace formal ultrasound and obstetrical consultation if the diagnosis is not clear.

The Bottom Line

Free fluid found in Morison’s pouch in patients with suspected ectopic pregnancy can be rapidly identified at the bedside by emergency providers and predicts the need for operative intervention.

 

Authors

This post was written by Michael Macias, MD, Ultrasound Fellow at UCSD.

References

    1. Rodgerson JD, Heegaard WG, Plummer D, Hicks J, Clinton J, Sterner S. Emergency department right upper quadrant ultrasound is associated with a reduced time to diagnosis and treatment of ruptured ectopic pregnancies. Acad Emerg Med. 2001; 8:331–6.
    2. Lynch MJ, Woodford NW. Rupture of a splenic artery aneurysm during pregnancy with maternal and foetal death: a case report. Med Sci Law. 2008;48:(4)342-5.
    3. Moore C et al. Free fluid in Morison's pouch on bedside ultrasound predicts need for operative intervention in suspected ectopic pregnancy. Acad Emerg Med. 2007; 8: 755-8

Prospective Outcomes of Pregnant ED Patients with Documented Fetal Cardiac Activity on Ultrasound

Background

Vaginal bleeding is a common cause of presentation to the emergency department (ED), and is the leading cause of presentations to the ED among patients with first trimester pregnancy [1]. It is reported that up to 25% of pregnancies have some bleeding within the first trimester [2]. Based on previous data, bleeding in the first trimester represents an increased risk of spontaneous abortion (SAB), with up to 50% of women losing the pregnancy [3]. However, patients with first trimester bleeding and a documented intrauterine pregnancy (IUP)  with fetal heart tones (FHTs), represent a subset of first trimester bleeding patients with improved outcomes, with rates of SAB ranging from 11.1-16.4% [4-5]. These previous studies were performed in outpatient obstetrical clinics and no prospective data exists with respect to outcomes in this subset of patients presenting to the emergency department. 

Prospective Outcomes of Pregnant ED Patients with Documented Fetal Cardiac Activity on US

Clinical Question

What is the rate of SAB in pregnant women presenting to the ED with first trimester bleeding and a documented IUP with cardiac activity?

Methods & Study Design

  • Design
    • Prospective observational study
    • Convenience sample of pregnant patients presenting to the University of Utah ED from January 1, 2008 through April 30, 2010.
  • Population
    • Pregnant women presenting to the ED with abdominal pain and/or bleeding
  • Inclusion criteria
    • Ultrasound (performed by ED physician at bedside or formal radiology study) demonstrating an IUP with FHTs and whose pregnancy dates placed them in the first trimester (< 13 weeks)
  • Exclusion criteria
    • No specific criteria
  • Intervention
    • Ultrasound demonstrating IUP with FHTs
  • Outcomes
    • Rate of SAB at 30 days after ED visit
    • Patients were contacted by telephone at least 30 days after their ED visit and asked about the status of their pregnancy

Results

Strengths & Limitations

  • Strengths
    • Performed in ED based population
    • Majority of ultrasound examinations performed by ED physicians making this applicable to point-of-care ultrasound
  • Limitations
    • Performed at single academic center
    • Low patient enrollment leading to large CI for rate of SAB
    • 85.9% patient follow up rate
    • Patients only followed out to 30 days after ED visit

Authors Conclusion

"In this prospective study of ED patients with first trimester bleeding and/or pain, we found that patients who had an IUP and FHTs by ED US had a 14.8% rate of SAB at 30 days. These findings may help to better define risk of SAB after first-trimester bleeding and allow us to provide more accurate counseling and prognostic information to pregnant ED patients presenting with these symptoms.”

Our Conclusion

This is an excellent paper that helps provide emergency medicine providers with prognostic information  regarding women presenting to the ED during first trimester pregnancy with vaginal bleeding and a documented IUP with FHTs. Often in emergency medicine we are focused on ruling out the life threatening diagnoses, in the above scenario, ectopic pregnancy, and it can be easy to lose sight of other important aspects of patient care. This paper helps refocus our attention and gives us important data to be able to provide an already anxious patient with some useful information on the potential expected course of their pregnancy. With this data, we are now able to better define the risk of SAB after first trimester bleeding and provide improved counseling and prognostic information to these patients.

The Bottom Line

In ED patients with first trimester bleeding, those that have an IUP and FHTs by ED ultrasound have ~15% rate of SAB at 30 days. 

Authors

This post was written by Michael Macias, MD, Ultrasound Fellow at UCSD.

References

    1. Dighe M, Cuevas C, Moshiri M, Dubinsky T, Dogra VS. Sonography in first trimester bleeding. J Clin Ultrasound 2008;36(6):352-66.
    2. Hasan R, Baird DD, Herring AH, Olshan AF, Jonsson Funk ML, Hartmann KE. Patterns and predictors of vaginal bleeding in the first trimester of pregnancy. Ann Epidemiol 2010;20(7):524-31.
    3. Dideriksen KL, Lidegaard O, Langhoff-Roos J. First trimester vaginal bleeding and complications later in pregnancy. Obstet Gynecol 2010;115(5):935-44.
    4. Poulose T, Richardson R, Ewings P, Fox R. Probability of early pregnancy loss in women with vaginal bleeding and a singleton live fetus at ultrasound scan. J Obstet Gynaecol 2006;26(8):782-4.
    5. Siddiqi TA, Caligaris JT, Miodovnik M, Holroyde JC, Mimouni F.Rate of spontaneous abortion after first trimester sonographic demonstration of fetal cardiac activity. Am J Perinatol 1988;5(1):1-4.
    6. Mallin M, e. (2018). Prospective outcomes of pregnant ED patients with documented fetal cardiac activity on ultrasound. - PubMed - NCBI . Ncbi.nlm.nih.gov. Retrieved 26 January 2018, from https://www.ncbi.nlm.nih.gov/pubmed/21334156

Ultrasound Guided Catheterization of the Radial Artery

Background

Arterial catheterization (the radial artery being the most common site)  is often performed in critically ill patients for hemodynamic monitoring and serial blood gas sampling, and is a core skill for critical care and emergency providers alike. While ultrasound guidance has become standard of care for  central venous catheterization, this is still not common practice for radial artery catheterization. In this critically ill patient population, there are often patient specific factors that make this procedure difficult using the palpation method, including hypotension, edema and obesity. Frequently, the palpation method requires multiple attempts which can result in arterial vasospasm, making further attempts even more difficult. This review article investigates whether their is a role for the addition of ultrasound guidance to radial artery catheterization. 

Ultrasound-Guided Catheterization of the Radial Artery 

Clinical Question

Does ultrasound guidance for radial artery catheterization improve first attempt success compared to the palpation method? 

Methods & Study Design

  • Design
    • Systematic Review and Meta-analysis of Randomized Controlled Trials
      • Article selection
        • Databases searched: EMBASE, CENTRAL, and Medline from inception through February 23, 2010
        • Critical care conference abstracts reviewed from 2005-2009
        • Experts in the field also contacted to seek additional articles
        • The methodologic quality of selected trials was appraised by two independent reviewers using the Jadad criteria
  • Population (See Figure 1)
  •  Heterogenous population of adults and pediatric patients in different clinical settings
  • Inclusion criteria
    • Randomized control trials comparing 2-D ultrasound guidance technique to traditional palpation technique for radial artery catheterization
  • Exclusion criteria
    • Trials evaluating use of doppler ultrasonography, marking techniques, or catheterization of arteries other than the radial artery were excluded
  • Intervention
    • Ultrasound guided radial artery catheterization
  • Outcomes
      • First-attempt success for radial artery catheterization

Results

    • A total of 4 RCTs were included in the final meta-analysis. Individual characteristics can be viewed in figure 2.
    • Pooled Findings
      • The pooled relative risk for ultrasound guided techniques was 1.71 (95% CI, 1.25-2.32). The forest plot can be seen in figure 3 with data provided in figure 4.

Strengths & Limitations

  • Strengths
    • Comprehensive literature search
    • Included only RCTs comparing traditional palpation technique to ultrasound guided technique for radial artery catheterization
    • Adequate sample size obtained which reached statistical significance with respect to outcome
    • Studies independently reviewed by two reviewers for inclusion in meta-analysis
  • Limitations
    • The patient populations were very heterogenous among RCTs (1 adult surgery population, 1 infant neurosurgery population, 1 adult ED population, 1 pediatric surgery population)
    • The operator populations were very heterogeneous among RCTs (anesthesia attendings/residents, emergency physicians, pediatric trainee and consultant anasthesiologists)
    • Lack of blinding

Author's Conclusions

 "Our meta-analysis clearly demonstrated a 71% increase in the likelihood of first-attempt success when using ultrasound guidance for radial artery catheterization."

Our Conclusions

Radial artery catheterization is fraught with error and barriers to success. Often this procedure will be performed in sick patients, with the operator encountering obesity, edema, and shock, all of which can contribute to difficulty palpating the radial pulse. Furthermore, even if the pulse is palpated, this can be unreliable at predicting underlying anatomy. Ultrasound allows direct visualization of the radial artery, including depth, diameter and surrounding structures, and allows for ongoing needle guidance. While not studied, in my personal experience I have also noted numerous occasions where the only sign of successful radial artery catheterization was direct visualization of the catheter tip in the radial artery (i.e. no blood seen in flash chamber) on ultrasound. If the standard palpation method was used, this would lead to a failed attempt.

It has become clear in many other instances that ultrasound adds safety and success to procedures routinely performed in the emergency department including: central venous access, thoracentesis, paracentesis, peripheral nerve blocks and arthrocentesis (of specific joints). This study allows us to confidently add radial artery catheterization to the list. While the patient population and operators in the study discussed are heterogeneous, it is reasonable to assume that emergency medicine providers who have experience with ultrasound guided procedures, will perform just as well, if not better than the study findings.  This generalization assumes ultrasound guided procedure experience and those without this experience may not show a benefit over the traditional palpation method for radial artery catheterization. This study does not mean that the palpation method is obsolete, rather, it suggests that ultrasound is a useful adjunct and likely adds success in patients with risk factors for difficult radial artery catheterization such as obesity, hypotension, edema or a difficult to palpate pulse.

The Bottom Line

Ultrasound guidance for radial artery catheterization shows a higher first-attempt success rate compared to the standard palpation method and should be considered by operators with other procedural ultrasound guidance experience. 

Authors

This post was written by Michael Macias, MD, Ultrasound Fellow at UCSD.

References

    1. Shiloh AL, e. (2018). Ultrasound-guided catheterization of the radial artery: a systematic review and meta-analysis of randomized controlled trials. - PubMed - NCBI Ncbi.nlm.nih.gov. Retrieved 13 January 2018, from https://www.ncbi.nlm.nih.gov/pubmed/20724734

Review of Lawsuits Related to Point of Care Emergency Ultrasound Applications

Background

Point-of-care (POC) ultrasound has become heavily integrated into clinical practice in emergency departments (ED). Ultrasound training is now standard in emergency medicine (EM) residency programs and most emergency physicians are able to independently perform and interpret bedside ultrasounds exams. With the rise in use of POC ultrasound by emergency physicians, there is an accompanying theoretical increase in malpractice risk. Malpractice risk can potentially arise from failure to perform an adequate study, failure to interpret findings accurately, or misdiagnosis. This increased liability has prompted some emergency physicians to avoid POC ultrasound in their own practice to decrease their personal risk or transfer risk to consulting services, such as radiology. However, the opposite argument could also be made that failure to incorporate ultrasound into one’s emergency medicine practice can leave clinicians susceptible to legal action as well. This study aims to build on the work of Blavais et al, which revealed that from 1987-2007 there was only one identifiable malpractice lawsuit associated with POC ultrasound. Given the increased use of POC ultrasound since the prior study, this article aims to further characterize the nature of malpractice lawsuits associated with POC ultrasound in more recent years.

Review of lawsuits related to POC emergency ultrasound applications

Clinical Question

With the increased use and scope of practice of POC ultrasound in EM, is there an associated increased  legal risk to emergency physicians performing POC ultrasound?

Methods & Study Design

  • Design
    • Retrospective review of Westlaw database for reported decisions in state and federal malpractice cases involving POC ultrasound
      • Westlaw database include state and federal case law and statutes, and public records
  • Population
    • Published case law in the US from Jan 2008 – Dec 2012 in the Westlaw database
  • Inclusion criteria
    • Cases were included if:
      • Physician was accused of misconduct
      • Patient encounter was in ED
      • Interpretation or failure to perform ultrasound was discussed to any degree
      • Ultrasound application was within ACEP ultrasound core applications (trauma, intrauterine pregnancy, AAA, cardiac, biliary, DVT, urinary tract, soft tissue/MSK, thoracic, ocular, procedure)
      • Ultrasound exam performed or ordered through a radiology department was within scope of ACEP core emergency ultrasound applications
  • Exclusion criteria
    • There were no specific exclusion criteria. However, cases settled out of court, cases with unreported decisions, and cases not publically available (private negotiations, arbitration, sealed records, etc) were not available for analysis through the Westlaw database.
  • Intervention
    • Westlaw database was reviewed for published case law (federal and state) in the US from Jan 2008 – Dec 2012
    • Search terms included “ultrasound”, “sonography”, “emergency”, “physician”, “doctor”
    • Emergency physicians with emergency ultrasound fellowship training reviewed case records that were identified via search. Specific case information was collected. Any discrepancies were discussed between the two reviewers to reach a consensus.
  • Outcomes
      • The follow case information was collected:
        • Basic clinical narrative of case
        • Exam type involved
        • Department that performed exam
        • Broad category of type of allegation (i.e. misdiagnosis, failure to interpret, failure to perform, failure to perform in timely manner)

Results

    • 120 records matched initial search criteria; 7 of these matched inclusion criteria
      • 2 out of 7 were reviewed and found to be outside the scope of ACEP core ultrasound applications
    • 5 identified malpractice cases relating to POC ultrasound in the ED
      • No cases resulted from misdiagnosis with POC ultrasound or failure to interpret POC ultrasound
      • All cases involved failure to perform a complete ultrasound study or failure to perform in a timely manner
      • Most common exam type was DVT study
      • Majority of cases involved patient death

Strengths & Limitations

  • Strengths
    • Provides valuable data on legal landscape of POC ultrasound
    • Study was designed to identify cases where emergency physicians not only performed but could have performed an ultrasound exam. This allows for potential assessment of “deferred risk”.
  • Limitations
    • Small n – Small number of cases limits ability to approximate any measure of risk to emergency physicians using POC ultrasound
    • Selection bias – Cases settled out of court, cases with unreported decisions, cases not publically available (private negotiations, arbitration, sealed records, etc) not included in Westlaw database
    • Limited assessment of other factors associated with each case: emergency physician ultrasound skills, access to ultrasound, level of facility support, barriers to perform ultrasound, medical decision making process

Author's Conclusions

“From 2008 to 2012, the Westlaw database reported no judicial decisions against an emergency physician performing POC ultrasound. The database reports five cases related to failure to perform an ultrasound examination that was within the scope of ACEP core emergency ultrasound applications in a timely manner. Further analyses using other legal data sources and insurance claim data are desired and further work is necessary to confirm these preliminary findings.”

Our Conclusions

This study provides reassuring evidence that emergency physicians are not significantly burdened by malpractice lawsuits relating to POC ultrasound use in their clinical practice. In a comprehensive search of publicly available federal and state US malpractice claims, only five cases were found to be associated with POC ultrasound. However, this number must be interpreted with caution. Rubin et al demonstrated that a very small percentage of paid malpractice claims in the US are judged in court (3.1%) while the majority are settled outside (96.9%). The Westlaw database used in this study was able to access only publicly available case data, or cases that were judged in court. Thus, it is difficult to draw generalizable conclusions about the legal risks associated with POC ultrasound from this study. Overall, this study reveals that within publicly available malpractice claims data, lawsuits relating to POC ultrasound are in the minority. While there is legal risk associated with use and failure to use available diagnostic modalities, emergency physicians should feel encouraged to incorporate POC ultrasound exams into their clinical practice.

The Bottom Line

Though the data is limited, there is some reassuring evidence that there is no significant legal burden associated with POC ultrasound used within the scope of ACEP core emergency ultrasound applications. Emergency physicians should continue to incorporate POC ultrasound into their clinical practice.

Authors

This post was written by Neha Chandra, MS4 at University of California, San Diego. It was reviewed by Michael Macias, MD, Ultrasound Fellow at UCSD.

References

      1. Rubin, Jessica B., and Tara F. Bishop. "Characteristics of paid malpractice claims settled in and out of court in the USA: a retrospective analysis." BMJ open 3.6 (2013): e002985.
      2. Stolz, Lori, et al. "A review of lawsuits related to point-of-care emergency ultrasound applications." Western Journal of Emergency Medicine 16.1 (2015): 1.

The effect of vessel depth, diameter, and location on US guided peripheral intravenous catheter longevity

Background

Nearly 30% of all patients who visit the ED in the US each year will require venous access. Bedside ultrasound-guided peripheral IVs (USGPIV) offer an alternative to central venous cannulation and external jugular cannulation for patients in which PIV access cannot be obtained, thereby reducing the risks of infection and the need for additional resources that are associated with the aforementioned procedures. The downside to USGPIVs lies in the longevity of this method of venous access, which introduces complications such as extravasation, tissue necrosis and disruption of access.  Failure rates are high, with 8% of them failing within the first 8 hours, and 47% failing within the first 24 hours. The authors of this weeks article speculate that this is due to the nature of the vessels targeted by ultrasound (US), being that they are often deeper and smaller veins in locations that are otherwise difficult to access without specialized imaging. This article will explore the influence of various vessel characteristics on the success and longevity of the USGPIVs, including vessel depth, diameter, and location.

The effect of vessel depth, diameter, and location on US guided peripheral intravenous catheter longevity

Clinical Question

How do specific characteristics of a vessel determine the success and longevity of a USGPIV?

Methods & Study Design

  • Design
    • A retrospective chart review of a previously gathered database of difficult intravenous access (DIVA) patients who underwent USGPIV placement in the ED
    • Data included images and measurements of the vessel’s depth, diameter and location as well as survival time of the IV
  • Population
    • Urban tertiary care center with a 4-yr EM residency and an US fellowship
    • Study period: Dec 2007-May 2008
  • Inclusion criteria
    • All DIVA patients: A DIVA patient is defined as someone with 2 failed peripheral IV attempts or a history of DIVA with inability to visualize or palpate a target vein on physical exam
    • DIVA patient must have underwent successful USGPIV placement in ED
  • Exclusion criteria
    • There were no specific exclusion criteria however patients were excluded for several reasons:
      • 18 for inability to establish USGPIV using study protocol
      • 12 for lack of charting to accurately determine time of IV removal
      • 2 for failure of consensus of at least 2 of the 3 blinded independent chart reviewers on timing or outcome of IV
  • Intervention
    • USGPIVs were placed by 2 PGY-2s, 1 PGY-3, and 1 US fellow, all met ACEP guidelines (at least 10 USGPIVs previously performed)
      • Successful IV placement was defined as aspiration of 5 mL of blood and ability to flush the line without resistance
      • Only 20-gauge, 48-mm-long (Angiocath Autoguard;BD Medical Systems, Sandy, UT) catheters were used for USGPIV placement
      • During USGPIV placement, vessels were measured for depth and diameter, and location was noted on a diagram of the upper extremity
  • Outcomes
      • Failure rate of USGPIV based on depth, diameter, and location
        • 2 blinded independent chart reviewers followed successfully placed USGPIVs for 48 hours or until failure, whichever came first
        • Failures were defined as IVs that infiltrated, dislodged, stopped working or were discontinued prematurely
        • IVs removed on patients that no longer required access were not considered failures

Results

  • Calculated USGPIV survival curves for vessels at given depths and location from Fields et al.
    • Statistical Analysis
      • Vessel depth divided into 3 zones: shallow (0.4 cm), intermediate (0.4-1.19 cm), and deep (≥1.2 cm); Intravenous diameter was divided into 4 groups (<0.3, 0.3-0.39, 0.4-0.49, and ≥0.5 cm);
      • Vessel location was divided into proximal (brachial region) and distal (antecubital fossa, forearm, or hand veins).
      • Kaplan-Meier estimator was used to measure time-to-failure and remove potential confounder of IVs that were removed for discharge or no longer needed
    • Findings
      • At 48 hrs, 48 (32%) had failed because of dislodgment, infiltration, or patient discomfort
        • 20 (42%) infiltrated
        • 11 (23%) dislodged
        • 16 (33%) were not flushing
        • 1 removed for discomfort
        • 36 (24%) were removed for routine reasons
        • 67 (44%) were still in place and without incident
        • There was no difference in patient characteristics of IVs that failed vs. those that did not fail
      • Kaplan-Meier Survival Analysis 
        • Depth: Survival probability excellent (1.00) for shallow vessels, moderate (0.62) for intermediate vessels, poor (0.29) for deep vessels STRONGEST PREDICTOR
        • Location: antecubital fossa or forearm associated with improved survival when compared with proximal placement in brachial or basilic vein (0.93 vs. 0.71)
        • Diameter: no significant difference
        • For each increase of 0.2 cm in depth, odds of failure at 48 hrs increases by hazard ratio of 1.36
        • Placement in proximal vs. distal location increases odds of failure by hazard ratio 2.76

Strengths & Limitations

  • Strengths
    • No difference in patient characteristics between failed and successful USGPIVs
    • Recruited difficult IV access patients from urban academic tertiary ED which is likely representative of true difficult access patient population and can be generalized to other EDs
    • 2 independent reviewers used for retrospective chart review
  • Limitations
    • Outcome variable (survivability) was gathered retrospectively; potential bias in rapid realization of IV failure and clear documentation
    • Possible that failed catheters were documented as “removed” because they were no longer needed or another access was obtained
    • Did not account for certain factors: nature of the infusion, how often IV accessed, movement of extremity, use of fixation device
    • Only assessed using 20-gauge, 48-mm IV
    • Small group of sonographers performed data collection, they may be more skilled than general population of emergency physicians

Author's Conclusions

“Ultrasound provides a useful rescue method for establishing IV access in patients with DIVA. The current study reveals 2 factors that significantly affect the durability of these IVs— depth and location. Using a 48-mm catheter, vessels of 1.2 cm or more deep have a high likelihood of USGPIV failure and should only be cannulated when other options are not available. Vessels of less than 0.4 cm deep yield the best USGPIV longevity. Forearm and antecubital sites are more enduring than those in the upper arm. Understanding of these associations will help the sonologist select the optimal vessel for successful USGPIV cannulation and longevity.”

Our Conclusions

Depth should be the primary consideration when selecting a vessel for USGPIV access. Due to high immediate failure rates, vessels of 1.2 cm deep or more deep should be avoided and other means of obtaining venous access should be considered. Providers should also take into consideration the location of IV placement. If it is anticipated that a patient will require IV access for longer than the immediate stay in the emergency department, then proximally-located IVs should be avoided given their high failure rate at 18 hours. This failure may be explained by the fact that proximal vessels are located closer to the axilla and usually embedded in looser skin containing more subcutaneous fat with greater potential for dislodgment upon movement of the extremity. Therefore, providers should consider how long the patient will be requiring access as well as how often the patient will be required to move the extremity in making decisions regarding venous access.

The Bottom Line

USGPIVs that are placed in more superficial (<1.2 cm) and distal (forearm/antecubital space) veins have a significantly higher likelihood of survival at 48 hours and these factors should strongly be considered when evaluating for a target for IV placement.

Authors

This post was written by Courtney Shay, MS4 at George Washington University. It was reviewed by Michael Macias, MD, Ultrasound Fellow at UCSD.

References

    1. Fields JM, e. (2017). The effect of vessel depth, diameter, and location on ultrasound-guided peripheral intravenous catheter longevity. - PubMed - NCBI Ncbi.nlm.nih.gov. Retrieved 10 November 2017, from https://www.ncbi.nlm.nih.gov/pubmed/22078967

Focused Transesophageal Echocardiography by Emergency Physicians is Feasible and Clinically Influential

Background

Cardiac ultrasound is frequently used in the emergency department (ED) to effectively identify  pericardial effusion, differentiate causes of shock, assess left ventricular function, and guide cardiopulmonary resuscitation (CPR). However, cardiac ultrasound employed in the ED is usually transthoracic echocardiography (TTE) as opposed to transesophageal echocardiography (TEE). TTE can often be limited, especially in critically ill patients and patients with high BMI. TEE offers the ability to reliably obtain continuous high-quality images that can be performed without interrupting CPR. Despite this, TEE is not often employed in the ED due to a variety of factors, including transducer cost, invasiveness, physician training, and hospital culture.

Focused Transesophageal Echocardiography by Emergency Physicians is Feasible and Clinically Influential: Observational Results from a Novel Ultrasound Program

 

Clinical Question

Is TEE performed by emergency medicine trained  physicians, in the emergency department setting, feasible and does it provide clinical utility?

Methods & Study Design

  • Design
    • Retrospective Review
  • Population
    • Study performed during a TEE in the ED pilot program by an academic emergency medicine program comprising 2 separate EDs, one of which is a regional trauma center.
    • All patients who underwent TEE in the ED during the 2-year program period were included.
  • Exclusion criteria
    • None
  • Intervention
    • TEE was performed on critically ill, intubated patients. Most commonly, the mid-esophageal 4-chamber view, followed by the transgastric short axis, mid-esophageal long axis, and bicaval views  were obtained.
  • OutcomesThe clinical impact of TEE, divided into two categories:
      • Diagnostic influence on clinical decision making
      • Therapeutic influence on procedures, medications, fluids, and CPR

Results

    • 54 TEE exams performed with 100% probe insertion success rate
      • 83% on first attempt
      • 11% required multiple attempts
      • 6% required use of a laryngoscope
      • 98% of exams produced images that were interpretable by the operator
    • TEE was diagnostically influential in 78% of cases
      • Excluded cardiac cause of arrest (56%)
      • Identified depressed left ventricular function (15%)
      • Identified hypovolemia (13%)
      • Identified regional wall motion abnormalities (6%)
      • Identified aortic dissection (4%)
    • TEE was therapeutically influential in 67% of cases
      • Influenced changes to CPR (43%)
      • Directed cessation of resuscitation (30%)
      • Guided hemodynamic support (26%)
    • No major adverse effects from probe placement identified

Strengths & Limitations

  • Strengths
    • TEE exams were performed successfully by 14 different emergency physicians at 2 separate sites after only 4 hours of training, which demonstrated well the feasibility of TEE use in the ED on a more widespread basis.
    • Well-described outcomes
  • Limitations
    • Retrospective
    • Relatively small sample size
    • No comparison with TTE

Author's Conclusions

“ED- based TEE showed a high degree of feasibility (98% determinate rate) and clinical utility, with a diagnostic and therapeutic influence seen in the majority of cases. Focused TEE demonstrates the most promise in patients who are intubated and have either undifferentiated shock or cardiac arrest.”

Our Conclusions

This study demonstrates that performing TEE in the ED is both feasible and safe, and can be implemented with limited training of the physician staff. It also shows that TEE does have some clinical utility in the ED, specifically the detection of aortic dissection. However, the most common therapeutic effect noted in the study was the assessment of CPR quality, which can typically be assessed with less invasive means such as femoral pulse palpation and waveform capnography. The other common findings noted in the study (i.e. depressed ejection fraction, hypovolemia, guidance of hemodynamic support) can typically be assessed with more traditional and less invasive TTE. In order to truly evaluate the utility of TEE in the ED, a prospective study showing a comparison of TEE with TTE, and other less invasive diagnostic modalities, would need to be performed. That being said, having the ability to diagnose aortic dissection at the bedside and to guide resuscitation via direct cardiac visualization during ongoing CPR are important considerations. This is a promising pilot study that opens up the door for further research evaluating the utility of TEE in the ED, however at this point, it is not clear whether it will perform better than traditional TTE and other clinical adjuncts in both diagnostic and therapeutic abilities.

The Bottom Line

Performing TEE in the ED is both feasible and safe, and does provide useful clinical information. However more studies are required in order to assess the true clinical utility of this modality.

Authors

This post was written by Toby Matt, MS4 at UCSD. It was reviewed by Michael Macias, MD, Ultrasound Fellow at UCSD.

References

    1. Arntfield R, e. (2017). Focused Transesophageal Echocardiography by Emergency Physicians is Feasible and Clinically Influential: Observational Results from a Novel Ultraso... - PubMed - NCBI . Ncbi.nlm.nih.gov. Retrieved 30 October 2017, from https://www.ncbi.nlm.nih.gov/pubmed/26508495

Variability in Interpretation of Cardiac Standstill Among Physician Sonographers

Background

The use of point-of-care echocardiography to inform termination or continuation of cardiopulmonary resuscitative efforts remains controversial [1,2]. Current understanding of its utility in prognostication is limited by varying definitions of cardiac activity. Definitions of cardiac standstill range from absence of “organized contractile activity (nonfibrillating) with a decrease in chamber size” to absence of “any visible movement of the myocardium, excluding movement of blood within the cardiac chambers or isolated valve movement” to absence of “any detected atrial, valvular, or ventricular motion within the heart” [3-5]. Without a consistent definition of cardiac standstill, it is difficult to interpret studies reporting conflicting resuscitation outcomes in cardiac arrest.

Variability in Interpretation of Cardiac Standstill Among Physician Sonographers

Clinical Question

What is the interrater reliability among providers in classification of cardiac standstill in point-of-care echocardiography?

Methods & Study Design

  • Design
    • Cross-sectional convenience sample survey
  • Population
    • Eligible: Residents, fellows, and faculty practicing in emergency medicine, critical care, or cardiology in attendance at one of six weekly emergency medicine (EM) conferences held at the following locations:
      • Icahn School of Medicine at Mount Sinai
      • Beth Israel Medical Center
      • St. Luke’s-Roosevelt Hospital
  • Exclusion criteria
    • Providers who had previously participated at a prior conference
  • Intervention
    • Participants were presented with the following clinical scenario: “55-year-old man in cardiac arrest who remains pulseless after 20 minutes of CPR”
    • Participants were shown 15 clips (6 seconds each, looped for 20 seconds total) presenting a variety of sonographic features
    • Asked to identify presence or absence of cardiac activity
    • Responses transmitted via remote polling devices
    • No definition of cardiac activity was provided
  • Outcomes
    • Primary: interrater reliability in interpreting cardiac standstill (Krippendorff’s alpha coefficient)
    • Secondary: subgroup analyses by specialty, training level, and self-described point of care (POC) ultrasound experience

Results

    • 127 participants (majority EM residents with basic ultrasound skills)
    • Overall moderate agreement with respect to identifying cardiac standstill (alpha 0.47)
    • Clips with stronger agreement:
      • No myocardial contraction
      • Myocardial contraction
      • Strong myocardial contraction
    • Clips with poorer agreement:
      • Valve flutter
      • Mechanical ventilation
      • Weak myocardial contraction
    • Moderate agreement across all training levels and self-reported ultrasonographic skill levels

Strengths & Limitations

  • Strengths
    • All participants saw the same clips
    • Response time limited (similar to clinical practice)
  • Limitations
    • Bias: recruitment from academic conferences
    • Majority with no or basic self-reported ultrasonographic skill level
    • Reported discussion among participants throughout survey

Author's Conclusions

“Our results support the possibility that previous studies have been subject to variability in the interpretation of cardiac standstill.”

Our Conclusions

We agree with the authors’ conclusions that there appears to be substantial variability in the interpretation of cardiac standstill. This study highlights a weakness in the current literature examining the utility of POC echocardiography used during resuscitation futility assessment. While this study does not provide data on clinical outcomes of standstill misclassification, it identifies a potential weakness in the available research. It is difficult to interpret studies reporting outcomes after standstill (such as meaningful survival) when the predictor is not consistently identified.

As a follow-up study, it would perhaps be interesting to see how the interrater reliability changes when participants are provided with a clear definition of cardiac standstill. Does the variability persist even with a uniform definition? If this improves interrater reliability it would provide additional support for the need for a consensus definition across future studies.

The Bottom Line

There is significant variability in classification of cardiac standstill among providers. A uniform definition of standstill may reduce this variability and aid in the interpretation of studies reporting conflicting outcomes after cardiac arrest.

Authors

This post was written by Carly Dougher, MS4 at UCSD. It was reviewed by Michael Macias, MD, Ultrasound Fellow at UCSD.

References

    1. Blyth, L., Atkinson, P., Gadd, K. & Lang, E. Bedside Focused Echocardiography as Predictor of Survival in Cardiac Arrest Patients: A Systematic Review: Echocardiography in Cardiac Arrest. Acad. Emerg. Med. 19, 1119–1126 (2012).
    2. Cohn, B. Does the Absence of Cardiac Activity on Ultrasonography Predict Failed Resuscitation in Cardiac Arrest? Ann. Emerg. Med. 62, 180–181 (2013).
    3. Schuster, K. M. et al. Pulseless Electrical Activity, Focused Abdominal Sonography for Trauma, and Cardiac Contractile Activity as Predictors of Survival After Trauma: J. Trauma Inj. Infect. Crit. Care 67, 1154–1157 (2009).
    4. Gaspari, R. et al. Emergency department point-of-care ultrasound in out-of-hospital and in-ED cardiac arrest. Resuscitation 109, 33–39 (2016).
    5. Kim, H. B., Suh, J. Y., Choi, J. H. & Cho, Y. S. Can serial focussed echocardiographic evaluation in life support (FEEL) predict resuscitation outcome or termination of resuscitation (TOR)? A pilot study. Resuscitation 101, 21–26 (2016).